Seminar

Institute for Plasma Research

Title :	Doping-induced super-lattice-like structure in
	the isotopic $Mg^{11}B_2$ bulk superconductor for
	fusion applications (*)
Speaker : Dr. Subrata Pradhan	
	Institute for Plasma Research, Gandhinagar
Date :	23rd March 2017 (Thursday)
Time :	03.30 PM
Venue :	Seminar Hall, IPR

Abstract :

Superconducting wires are widely used for fabricating magnetic coils in fusion reactors. Superconducting magnet system represents a key determinant of the thermal efficiency and the construction/operating costs of such a reactor. In consideration of the stability of ¹¹B against fast neutron irradiation and its lower induced radioactivation properties, MgB₂ superconductor with ¹¹B serving as the boron source is an alternative candidate for use in fusion reactors with a severe high neutron flux environment. In the present work, the alycine-doped Ma¹¹B₂ bulk superconductor was synthesized from isotopic ¹¹B powder to enhance the high field properties. The observed grains with reduced symmetry and the corresponding peaks of Raman spectra suggested that a super-lattice-like structure was formed, and the lattice-scale TEM image further proved that the macroscopic grains with the super-lattice structure are consisted of two Mg-B layers and one Mg-B-C layer in between. Owing to this unique structure, the transition temperature, which was supposed to decrease due to either isotope effect or carbon doping, remained at the same level as that for the un-doped Mg¹¹B₂ sample. Furthermore, the critical current density was enhanced (10³ A cm⁻² at 20 K and 5 T) over the entire field in contrast with the sample prepared from natural boron.

(*): The talk is a part of the BRNS-DAE-SRC-OIA (92-022) Research Grant.